<menuitem id="et8r3"><strong id="et8r3"></strong></menuitem>

<samp id="et8r3"><ins id="et8r3"><ruby id="et8r3"></ruby></ins></samp>
  1. <tbody id="et8r3"></tbody>
      <tbody id="et8r3"></tbody>
      <menuitem id="et8r3"></menuitem>

      水質檢測儀

      水質檢測儀品牌 水質檢測儀廠家 EN

      污水處理廠運行水質化學(包括生化)性質指標

      發布時間:2019/9/30 16:43:07 來源:貫奧儀器儀表 作者:便攜式多參數水質分析儀器 閱讀次數:

        污水水質化學指標有懸浮物、pH、堿度、重金屬離子、硫化物、生化需氧量、化學需氧量、總需氧量、總有機碳、有機氮、溶解氧等等。

        1.化學需氧量(COD)

        化學需氧量COD,是在一定的條件下,采用一定的強氧化劑處理水樣時,所消耗的氧化劑量。它是表示水中還原性物質多少的一個指標。水中的還原性物質有各種有機物、亞硝酸鹽、硫化物、亞鐵鹽等。但主要的是有機物。因此,化學需氧量(COD)又往往作為衡量水中有機物質含量多少的指標。化學需氧量越大,說明水體受有機物的污染越嚴重。

        COD測定是污水處理廠日常主要監測項目,通過對不同構筑物的進出水COD的測定,可以準確掌握構筑物的運行情況,通過對一段時期的數據分析,可以對構筑物的運行進行適當調整,以便保證污水的處理效果。另外,對污水廠出水而言,COD是必須監測的項目,出水應該達到相應國家標準。

        化學需氧量(COD)的測定,隨著測定水樣中還原性物質以及測定方法的不同,其測定值也有不同。目前應用最普遍的是酸性高錳酸鉀氧化法與重鉻酸鉀氧化法。高錳酸鉀(KmnO4),氧化率較低,但比較簡便,在測定水樣中有機物含量的相對比較值時可以采用。重鉻酸鉀(K2CrO7)法,氧化率高,再現性好,適用于測定水樣中有機物的總量。

        2.生化需氧量(BOD)

        生化需氧量(BOD),是在有氧的條件下,由于微生物的作用,水中能分解的有機物質完全氧化分解時所消耗氧的量稱為生化需氧量。它是以水樣在一定的溫度(如20℃)下,在密閉容器中,保存一定時間后溶解氧所減少的量(mg/L)來表示的。當溫度在20℃時,一般的有機物質需要20天左右時間就能基本完,成氧化分解過程,而要全部完成這一分解過程就需100天。但是,這么長的時間對于實際生產控制來說就失去了.實用價值。因此,目前規定在20℃下,培養5天作為測定生化需氧量的標準。這時候測得的生化需氧量就稱為五日生化需氧量,用BOD5表示。如果污水中的有機物的數量和組成相對穩定,則兩者之間可能有一定的比例關系,可以互相推算求定。生活污水的BOD與COD的比值大致為0.4~0.8。對于一定的污水而言,一般說來,COD>BOD20>BOD5。

        BOD5也是污水處理廠日常重要監測項目之一。進行BOD5監測的具體意義基本與COD相同。

        不過,由于我國存在的河流之排水體制,因此城市污水廠污水中含有一定量的工業廢水,相對與生活污水而言,工業廢水水質變化大而且難于降解,通過監測污水廠進水中BOD及COD,可以大致的判斷污水的可生化性。

        生化需氧量的經典測定方法是稀釋接種法。


        3.溶解氧DO

        溶解在水中的分子態氧稱為溶解氧,天然水的溶解氧含量取決于水體與大氣中氧的平衡。溶解執的飽和含量和空氣中氧的分壓、大氣壓力、水溫有密切關系。清潔地地表水溶解度一般接近飽和。由于藻類的生長,溶解氧可能過飽和水體受有機、無機還原性物質污染時溶解氧降低。當大氣中的氧來不及補充時,水中溶解氧逐漸降低,以全趨近于零,此時厭氧菌繁稍,水質惡化,導致魚蝦死亡。

        廢水中溶解氧的含量取決于污水排出前的處理工藝過程,一般含量較低,差異很大。魚類死亡事故多是由于大量受納污水,使水體中耗氧性物質增多,溶解氧很低,造成魚類窒息死亡,因此洛解氧是評價水質的重要指標之一。

        在污水廠整個運行過程中,十分重視水中溶解氧的測定。

        國內外進行城市污水處理的主要是考生物二級處理系統,多為好氧法。顧名思義就是利用好氧微生物的新陳代謝過程分解去除水中的有機物。從中也可以看出,DO氧的控制是十分重要的,首先,應該保證水中有足夠的溶解氧,這樣好氧微生物才能正常工作,這是取得較好的運行效果的前提。可是,如果充氧過多,就會造成浪費,導致運行成本增加。因此,曝氣池中的DO一般控制在2~4mg/L之間。

        當由于設備問題或其他原因導致溶解氧不足時,處理系統就會出現故障。例如,曝氣池中DO不足,結果多會導致活性污泥的絲狀菌膨脹。原因在于,細菌和絲狀菌對不足的DO進行競爭,可是在DO不足條件下,絲狀菌的競爭力要遠遠大于細菌,因此,細菌獲得的DO會更少,它們的生長受到抑制,相反,絲狀菌得到機會大量繁殖,最終結果就是絲狀菌膨脹。

        在A/O、A2/O等具有一定的脫氮除磷工藝中,對于DO的控制也非常重要。為了得到想應的N、P的去除率,必須保證有合適的DO值。

        可見,在污水廠的日常運行的監測中,對于DO的監測是十分有意義的。通唱采用的方法有碘量法及其修正法、膜電極法和現場快速溶解氧儀法。

        4.總需氧量(TOD)

        總需氧量(TOD)。有機物中含C、H、N、S等元素,當右機物全都被氧化時,這些元素分別被氧化為CO2、H20、NO2和SO2,此時的需氧量稱為總需氧量(TOD)。

        總需氧量測定原理和過程是向氧含量中注入一定數量的水樣,并將其送入以鉑鋼為觸媒的燃燒管中,以900℃的高溫加以燃燒,水樣中的有機物因被燃燒而消耗了載氣中的氧,剩余的氧用電極測定,并用自動記錄器加以記錄,從載氣原有的氧量中減去水樣燃燒后剩余的氧,即為總需氧量。

        此指標的測定,與BOD、COD的測定相比,更為快速簡便,其結果也比COD更接近于理論需氧量。

        5.總有機碳(TOC)

        總有機碳(英文縮寫TOC)。表示水中所有有機污染物的總含碳量,是評價水中有機污染質的一個綜合參數。它是用燃燒法測定水樣中總有機碳元素量來反映水中有機物總量的一種綜合測定指標。其測定結果以C含量表示,單位為mg/L。

        它的測定原理與過程是:將水樣加酸,通過壓縮空氣吹脫水中的無機碳酸鹽,以排除干擾,然后將水樣定量地注入以鉑鋼為觸媒的燃燒管中,在氧的含量充分而且一定的氣流中,以900℃的高溫加以燃燒,在燃燒過程中產生二氧化碳,經紅外氣體分析儀測定,以自動記錄器加以記錄,然后再折算其中的碳量。

        TOC的測定采用燃燒法,因此能將有機物全部氧化,它比BOD5或COD更能直接表示有機物的總量,因此常常被用來評價水體中有機物污染的程度。

        近年來,國內外已研制成各種類型的TOC分析儀。按工作原理不同,可分為燃燒氧化一非分散紅外吸收法、電導法、氣相色譜法、濕法}L化一非分散紅外吸收法等:其中燃燒氧化-非分散紅外吸收法只需一次性轉化,流程簡單、重現性好、靈敏度高,因此這種TOC分析儀廣為國內外所采用。

        6.氮(有機氮、氨氮、總氮)

        有機氮是反映水中蛋白質、氨基酸、尿素等含氮有機化合物總量的一個水質指標。

        若使有機氮在有氧的條件下進行生物氧化,可逐步分解為NH3、NH4+、N02-、NO3-等形態,NH3和NH4+稱為氨氮,NO2-稱為亞硝酸氮,NO3-稱為硝酸氮,這幾種形態的含量均可作為水質指標,分別代表有機氮轉化為無機物的各個不同階段。

        總氮(英文縮寫TN)則是一個包括從有機氮到硝酸氮等全部含量的水質指標。

        氨氮( NH3-N )是污水廠出水的重要監測指標,水中氨氮的來源卞要為生活污水中含氮有機物受微生物作用的分解產物,某些工業廢水,如焦化廢水和合成氨化肥廠廢水等,以及農田排水。此外,在無氧環境中,水中存在的亞硝酸鹽亦可受微生物作用,還原為氨。在有氧環境中,水中氨亦可轉變為亞硝酸鹽,甚至繼續轉變為硝酸鹽。

        測定水各種形態的氮化合物,有助于評價水體被污染和“自凈”狀況。魚類對水中氨氮比較敏感,當氨氮含量高時會導致魚類死亡。

        以游離氨NH3)或銨鹽(NH4-)形式存在于水中,兩者的組成比取決于水的pH值和水溫。當pH值偏高時,游離氨的比例較高。反之,則銨鹽的比例高,水溫則相反。因此,在監測時應該對pH和水溫進行足夠的注意。

        氨氮的測定方法,通常有納氏比色法、氣相分子吸收法、苯酚-次氯酸鹽(或水楊酸-次氯酸鹽)比色法和電極法等。

        水中N會導致水體富營養化,污水廠出水中的N應該按照國家及地方政府的相應要求進行處理后達標排放。因此,對于出水中N的監測是污水廠水質監測的重要項目之一。

        此外,對于廣泛采用二級處理為主的城市污水廠而言,為了保證污水廠的正常運行,必須保證生化池中微生物對營養的需求,好氧法一般控制在:BOD:N:P=100:5:1,因此,對于污水廠進水N的監測,有利于對微生物營養的控制,當污水中含磷比例較少時,需要人為的進行補充,以保證微生物的營養需求,進而保證污水處理系統的正常運行。

        7.磷(總磷、溶解性磷酸鹽和溶解性總磷)

        在天然水和廢水中,磷幾乎都以各種磷酸鹽的形式存在,它們分為正磷酸鹽,縮合磷酸鹽(焦磷酸鹽、偏磷酸鹽和多磷酸鹽)和有機結合的磷(如磷脂等),它們存在于溶液中,腐殖質粒子中或水生生物中。

        一般天然水中磷酸鹽含量不高。化肥、冶煉、合成洗滌劑等行收的工業廢水及生活污水中常含有較大量磷。磷是生物生長必需的兀素之一。但水體中磷含量過高(如超過0.2mg/L),可造成藻類的過度繁殖,直至數量上達到有害的程度(稱為富營養化),造成湖泊、河流透明度降低,水質變壞。磷是評價水質的重要指標。

        為了進一步防止水中P導致水體富營養化,污水廠出水中的P應該按照國家及地方政府的相應要求進行處理后達標排放。因此,對于出水中P的監測是污水廠水質監測的重要項目之一。

        此外,對于廣泛采用二級處理為主的城市污水廠而言,為了保證污水廠的正常運行,必須保證生化池中微生物對營養的需求,好氧法一般控制在:BOD:N:P=100:5:1,因此,對于污水廠進水P的監測,有利于對微生物營養的控制,當污水中含磷比例較少時,需要人為的進行補充,以保證微生物的營養需求,進而保證污水處理系統的正常運行。

        8.pH值

        pH值是指示水酸堿性的重要指標,在數值上等于氫離子濃度的負對數。pH值的測定通常根據電化學原理采用玻璃電極法,也可以用比色法。

        pH值能表示水的最基本性質,對水質的變化、水處理效果等均有影響,對pH值的測定和控制,對維護污水處理設施的正常運行、防止污水處理及輸送設備的腐蝕、保護水生生物的生長和水體自凈功能都有重要的實際意義。

        污水的pH值如過高或過低,會影響生化處理,因為適宜于生物生存的pH值范圍往往是非常狹小的,并且也是很敏感的。比如,在活性污泥法系統的曝氣池中,如果由于pH發生了變化,如從正常的6.5~8.5變化到了5.5,那么,系統很有可能出現活性污泥的絲狀菌膨脹。這將直接影響出水水質,導致出水惡化。其主要原因在于,在活性污泥中應該細菌占優勢地位,其喜歡的最佳pH 范圍是6.5~8.5,當pH值正常時,細菌占主要地位,絲狀菌數量有限。但是,當pH變化到了5.5后,由于非常適合絲狀菌生長,缺抑制了細菌的生長,這樣就會導致絲狀菌在活性污泥中占優勢,致使污泥膨脹。

        另外,在污泥或高濃度廢水進行厭氧消化處理時,也應該格外注意pH值的控制。因為,在厭氧消化處理過程中,主要是由產甲烷菌群和非產甲烷菌群起作用。其中,產甲烷菌群對于pH值要求非常苛刻,需要控制在6.5~7.5,最好控制在6.8~7.2之間,否則,甲烷產氣率就會明顯下降,影響消化效果。

        一般要求處理后污水的pH值為6~9,當pH值小于5時,就能使一般的魚類死亡。

        9.懸浮物(SS)

        懸浮物SS指不能通過過濾器(濾紙或濾膜)的固體物質。污水中的固體物質包括懸浮固體和溶解固體兩類。懸浮固體指懸浮于水中的固體物質。懸浮固體也稱懸浮物質或懸浮物,通常用SS表示。懸浮物透光性差,使水質渾濁,影響水生生物的生長,大量的懸浮物還會造成河道阻塞。從國家及地方相應的污水排放標準而言,SS是進行監測的重要項目之一。

        10.有毒物質

        有毒物質是指污水中達到一定的濃度后,能夠危害人體健康、危害水體中的水生生物,或者影響污水的生物處理的物質。由于這類物質的危害較大,因此,有毒物質含量是污水排放、水體監測和污水處理中的重要水質指標,有毒物質是人們所普遍關切的,有毒物質可分為無機毒物和有機毒物。

        無機物主要代表是一些重金屬離子如汞、鉻、鎘等,這些離子在水中如果不去除或處理效果不好,會進入天然水體或生生系統,最終可通過食物鏈轉移到人體中進行大量付集,最終導致各種公害性疾病的出現。如水俁病、骨痛病等。

        有機毒物的典型代表有氰化物、酚、有機氯化物等。這些物質也會導致嚴重傷害性事故。

        因此,對于城市污水處理廠的出水、出泥進行有毒有害物質進行認真、嚴格、科學的監測是必須的。只有真正達到了排放標準才能排放或做他有。


      国产丰满老熟妇乱xxx1区